PDL Reference Manual for D-series Drives v1.1

PDL Reference Manual
for D-series Drives

PDL

Process Description Language

Version 1.1
September 2014

HIWIN Mikrosystem Corp.

PDL Reference Manual for D-series Drives v1.1 Table of Contents

Table of Contents

I (< =Yoo 1
1.1, ADOUL the MANUAL.......coniiiiii e e e e et er e 2
2 Y11 1] = 1] 4 T TSP 3
1.3, Variable TYPE ..o 4
O o o T [| (< 7

P o) 10 4T 1 [0 [9
2.1. ASSIGNMENT COMMEANTSccoeiiiieeee e 11

2.1.1. INAEX AULO INCIBASE ...evniiee it e et e et e e et aeaaea e 13
2.1.2. AUt iNCremeNnt/deCIreMENT..........uuiiiieiiiieee et 13
2.1.3. State aSSIGNMENT.......coiiiiiiiiiiiiiiiiieee e 14
2.0, SIZEO e 14
2.2. Program flow COMMAaNGS..........cooeiiiiiiiieeeeeee e 15
2t N T | | T 15
2.2.2. Walt, SIEEP .. 15
2.2.3. OO et 16
2.2.4. INAITECE QOOceiiiiiiiiiiiieiieeee e 16
2. 2.5, CaAll, T e 17
A A ST = (11 o] (o T oSS 17
A R [To T o RSP 18
D S TR | = - 18
e Y Y. o111 TR 20
2200 O TR 1]| T 21
2200 N T 1@ 10 I oT0] 1o 11 1[0 o [T 21
2.3, BUIA IN TUNCLONS e e e e e e e e e e eaas 23
D T T 1 4T O 1 411 I 23
A I | o =TT 23
2.3.3. SIgM .ttt 23
2.3, SIN, COS et s 24
2.3 D SO e 24
G I T 1LY TR 24
A A= 1 11 S 24
2.3.8. hitset, bitClr, DittOg........ccoeiiiiiee e 25
2 e T 1 0T 1 o o)Y 26
P Tt KO 1 4 1= 1 1T 26
2.3.11. MEMMIN, MEMIMIAX evuitniienieeeieeee et e et e e et e e e et e e es s e sneesneesnns 27
D2 TR 2 1 4 1= 1 151U o o 28
2.4. Special COMMANSciii i e e e e e 29
2.4.1. printl, retprintl. ... 29
2.4.2. printl/retprintl + parameters.........cccccoiiiiiiii 29
2.4.3. set, clear, toggle State.........ouuvueiiiiiieeeeeeece e 31
R T B 1 (=11 (1Y 32
S Tt R = 1= 32
2.5.2.1ong, Short, float...........ccoeiiiiiiicee e 32
R TG T o (=Y 1] LT 33
2. 5.4, UNAET e 34
2.5.5. ifdef, ifndef, elifdef, elifndef, endif..........cooveeieiiii e, 34
2.5.6. INCIUAE ... e 35

HIWIN Mikrosystem Corp. ii

PDL Reference Manual for D-series Drives v1.1 Table of Contents

Revision History:

1.1 2014-09-15 | D-Serise Drive Frist Release based on ETD 555.

HIWIN Mikrosystem Corp. iii

PDL Reference Manual for D-series Drives v1.1

(This page is intentionally left blank.)

HIWIN Mikrosystem Corp.

Table of Contents

PDL Reference Manual for D-series Drives v1.1 1. Preface

1. Preface

I o 12 = Vo TP 1
1.1, ADOUL thE MANUAL ... et e e e e e aaas 2
Y 1] = 1 2 T PP 3
1.3, VaNADIE Ty PO .. 4
S = o ToT Yo U] (<Y 7

HIWIN Mikrosystem Corp. 1

PDL Reference Manual for D-series Drives v1.1 1. Preface

1.1. About the manual

This document is applicable for mega-fabs and HIWIN D-series servo drives. It
describes how to use PDL (Process Description Language). PDL is a package for
motion control programs developed for mega-fabs or HIWIN drives. Users are able to
write a PDL program with *.pdl file (text file) on PCs, and to execute the PDL program in
a drive’s flash by MDP (DSP firmware).

Properties of PDL are described as following:

Multitasking can handle up to maximum 4 tasks (0~3) at the same time. (The
task O is reserved for system use.)

Users are allowed to define variables (hame, type, size) by themselves in
programs.

Support array and pointer.

Support “loop, while, if, else, till, and goto” to control program flow.
Support to create mathematical algorithms.

Memory size for code is up to 32 Kbytes.

Memory size for user variables is up to 400 long words.

The name of a user variable is up to 17 characters.

A label name is up to 24 characters.

A proc name is up to 24 characters.

HIWIN Mikrosystem Corp. 2

PDL Reference Manual for D-series Drives v1.1 1. Preface

1.2. Multitasking

PDL supports to execute up to 4 tasks at the same time. In the memory of DSP, each
task has its own counter, stack pointer, flag, and stack space. Assume that all tasks
have the same priority, and there are n tasks going to be executed. If all tasks are not at
sleep and stop states, each one will be executed once in n phases (66.7usec per
phase). The following is going to introduce the method of changing the priority of task.
Users are able to decide the order of task O to task 3 after resetting drive by using the
command of #task/n (n is the desired order number). However, it is not necessary for
each task to be executed after resetting drive.

Global variables are public for all tasks. The same command is also able to be used in
all tasks. Therefore, to avoid global variables, global functions, and other resource be
occupied by two or more tasks, user are able to use lock and unlock commands to
control data access by different tasks. Furthermore, the multitasking synchronization is
able to be achieved by lock and unlock.

(1) Task is able to be executed by the following methods:

e Put #task/n in any section of the program. When the program goes through
that section, the task with number n will be executed. Users are able to use ret
to terminate the task with number n.

e Users are able to use the run command to create a new task through a PC
(referring to RunFuncPdIN and SetArrayRunFuncN in the mpi.dll file).
When using the run command, users should include the label address of task.
The symbol of “ " has to be added in front of label. If users want to terminate
the label, they should use the halt command. One label is allowed to be
executed once on a PC.

(2) Task is able to be terminated by the following three methods:
e Execute halt/ret/rertprintl commands.
e Users are able to use the kill command to close other task.
e Users are able to terminate a task through PC (referring killTask in mpi.dll file).

HIWIN Mikrosystem Corp. 3

PDL Reference Manual for D-series Drives v1.1 1. Preface

1.3. Variable Type

Any variable has the following attributes:
e Defined by: system or user variables.

e Type: long (32 bit), float (32 bit), short (16 bit), state (1 bit), float pointer (32
bit), or long pointer (32 bit).

e Size: All variables can be considered as arrays with the minimum size of 1.

e Scope: (long and float) user variables can be temporary (procedure local
variables) if they are declared in the header and within a procedure.

(1) System variable

System variables are predefined variables (name, length, location). Each one
performs a certain function. For example, the system slave variables X vel _max,
X_acc, X_dcc, X_new_sm_fac define the velocity trapeze profile, and setting the
variable X_trg in the slave to a new value causes the X axis to move at this profile
velocity.

(2) User variable

User variables are variables defined in the *.PDL file with #long, #short, and #float
directives commands. They can be defined as long or float pointers (long pointer
contains an address of another long/short variable, and float pointer contains an
address of another float variable). If the user variable is declared in the header or
within a procedure, it is temporary (local procedure variable). Variables may have
16 (short) or 32 (long/float/pointers) bit lengths.

(3) State

States being always system variables are special 1-bit variables used in conditional
statements. States can be modified by using seton/setoff/toggle/state assignment
commands. States may be represented inputs/outputs digital signal or any internal
states (axis run/not run for example). All states are the bits of the status array
variable.

A short or long variable may be interpreted as a signed or unsigned number
depending on its function. The size attribute is relevant to array. Access to an item in
array is done by using the square breakers “[]".

Example:
vel_max[2]=20000;
abspos[n]=50000; /I nis a short local variable.

A variable can be indexed by a constant or a short/long variable. Any variable can
be indexed no matter its size. When indexed with a constant, the compiler doesn’t
check size overflow.
For example:
#short Eli, Rafi, Benny
My_array[100], N; /I Declare short user variables/arrays
HIWIN Mikrosystem Corp. 4

PDL Reference Manual for D-series Drives v1.1 1. Preface

Eli[0]=15; /I Equivalent to Eli=15
Eli[1]=100; /l Equivalent to Rafi=100
Eli[2]=500; // Equivalent to Benny=500
N=55;
My _array[N]=Benny ; // Equivalent to My _array[55]=500
(4) Pointer
Pointers are 32-bit variables, which are used to store address to other variable.
Example:
#long v, *pv; // pv is defined as pointer to long or short variable.
pv=&v; /I pv is assigned with the address of v
*pv=55; /l'i.e, v=55

The indirection * is allowed only for variables that are declared as pointers. It means
that the variable value is an address of another stored value that should be taken.
The operator ‘& when precedes variable name means that the address of the
variable should be taken (and not its value). Pointers can be declared as long or
float according to the variable type that they are going to point to.

Example:

#float f, *pf; I pf is defined as pointer to float variable.
pf= &f;
*pf=5.4; /lie., f=5.4

No short type pointers. Pointers for long may also use for short as well. Pointers
may be indexed in several ways.

Example:
#long v[6],n, *pv;

pv=_&v;

*pv=0; /I v[0]=0
*pv[1]=10; //v[1]=10
pv=pv+2;

*pv=20; /Il v[2]=20
pv=&v[3];

*pv=30; /Il v[3]=30
n=4;

pv=&v[n];

*pv=40; I/ v[4]=40
n=1;

*pv[n]=50; // v[5]=50. Note that, operator * is performed before operator [].

HIWIN Mikrosystem Corp. 5

PDL Reference Manual for D-series Drives v1.1 1. Preface

*pv[1]=50; // v[5]=50

Pointers must be initialized to any variable address before using them with the
indirection operator *’. Otherwise, results are unpredictable (including software fail).
Pointers may be defined for integer (long/short) or float. Users should use the correct
pointer type when they access the variable otherwise an incorrect value will be
read/written.

Pointers may be used to pass output parameters (“by reference”) to procedures.

HIWIN Mikrosystem Corp. 6

PDL Reference Manual for D-series Drives v1.1 1. Preface

1.4. Procedure

Procedures are similar to functions in C/C++. Not like C, they do not return the value
directly. Return value can be achieved by pointer parameters.

Syntax of procedure:

proc <procedure name>(<variable type> variable name, <variable type> variable
name,...) do

Procedure body
end; // End procedure

Example:

/I The following procedure computes the sum of 3 values (a, b, ¢ parameters) and return
[/ result to sum parameter.

proc add3(long a, long b, long ¢, long * sum) do
#long tmp; // Define temporary user variable.
tmp=atb;
*sum=tmp+c;

end; // Return from procedure
#long vi,v2, s; /I Define global user variables.
add3(4,5,6,&s); // Result s = 15.

v1=10;

v2=100’

add3(vi,v2,1,&s); // Results=111.

Notes:
e The procedure deceleration starts with the key word proc.
e The procedure body starts with do and closes with end.

e All parameters variables and internal declared variables are temporary, i.e.
they are not recognized outside the procedure. Temporary variables are
allocated in the stack. Their scope lifetime is only when the procedure is
executed. Non-temporary variables are global variables, which are declared
outside any procedure, or system variables. Temporary variables are called
also local variables in standards languages like C/C++. The procedure can
access also all global variables.

e Labels that are within the procedure are recognized only in the procedure, and
global labels or labels in other procedures are not recognized by the procedure.

e Because each task has its own stack area more than one task, it may run the
same procedure without interfering each other (unless they access global
variable(s)).

HIWIN Mikrosystem Corp. 7

PDL Reference Manual for D-series Drives v1.1 1. Preface

Temporary variables can be long or float, and can be pointers, not allowed
short type.

Calling to procedure syntax is similar as in C/C++, i.e. the specified procedure
name is followed by the arguments list enclosed in (). Each argument can be a
constant or a variable. If the argument is constant, the compiler automatically
converts it to the correct type if needed (float/long)

When calling to procedure, the compiler checks the matching type of
parameters in the parameter list again. The parameter list is declared in the
procedure. It also checks the correct number of parameters (unlike C++, no
default values is allowed, and no overload procedures).

Temporary variables can be given the same name as global user variables (but
not system variables) or the same name as temporary variables in other
procedure. The same is applied to labels.

When the procedure is declared below the line where using it, users may put a
prototype of it to avoid compile error.

Example:
proc mul(float a, long b, float * res); // Procedure prototype.

#float f1, m; /I Global user variables.
f1=44.2;
mul(f1, 20, &m); /I The ‘mul’ is now recognized.

proc mul(float a, long b, float * res) do // Procedure implementation.
*res=a*b;
end; /I Return from procedure.

HIWIN Mikrosystem Corp. 8

PDL Reference Manual for D-series Drives v1.1 2. Commands

2. Commands

This chapter describes commands in PDL.

P2 O 0] 1111 4 T=1 o [0 [T 9
2.1. ASSIGNMENT COMMEANTSccoeiiiieeee e 11
D T T 1 0T [= 10) (o N1 [0 (= < 13
2.1.2. Auto iNCrement/deCremMENt.uuivivieieee e 13
2.1.3. State aSSIGNMENT ...t e 14
2.0, SIZEO e 14

2.2. Program flow COMMAaNGS..........coooiiiiiiiiieeee 15
L T 0T || TR 15
2.2.2. Walt, SIEEP ..o 15
A2 T o [0 o TS 16
A S Vo [1€=Tod il o [0 (o PSP 16
S T o || R = T 17
2.2.6. EXITPIOCciiiiiiiiiieeeee e 17
A R [To T o J USSP 18

2. 2. 8. i, IS e 18
e Y Y. o 11 1SR 20
2 O TR]| TR 21
b7 5 W I © 1U I I o 1 [0 [170 o T 21

e T =10 11 (o I T TR (0T g Tt 1 0] 1 23
D T T 1 4T O 1 411 PR 23
2.3, 2. A e 23
2.3.3. SION i 23
2.3, SIN, COS e s 24
ARG TR o | AP PP UPPPTTR 24

P L T o 1Y/ T 24

B A= 1 [SRR 24
2.3.8. bitset, DitClr, DittOg........cceeiieeeeceee e 25
2,30, MEBIMCPY ettt ettt et e ettt e e et e e et et e e e et e e e e eba e e e eeennas 26

P2 TR0 O 1 4 =T 0 £ 26
2.3.11. MEMMIN, MEMIMIAX evuitniienieeeieeee et e et e e et e e e et e e es s e sneesneesnns 27
2.3.02. MEIMSUM...uiiiii et e et e e et e e e e e e et e et e e et e e e st e e et eeannee st eeannaaes 28

2.4. Special COMMANASuiiii e e e e e e e e aeaes 29
2.4.0. printl, retPrintl.. ... 29
2.4.2. printl/retprintl + parameters.............uvveiiiiiiiii e 29
2.4.3. set, clear, toggle State.........couvueiiiii i 31

A T B 1 (=T 11V T PO P PSP UPPPPP 32
S T R - 1] T 32
2.5.2. long, short, float............coovvviiiiiiiii 32
25,3, AEIINE e 33

2. 5.4, UNAET . e 34

HIWIN Mikrosystem Corp. 9

PDL Reference Manual for D-series Drives v1.1 2. Commands

2.5.5. ifdef, ifndef, elifdef, elifndef, endif..........c.ooiviieiiiiii e, 34
2. 5.6, INCIUAE ... e 35

HIWIN Mikrosystem Corp. 10

PDL Reference Manual for D-series Drives v1.1 2. Commands

2.1. Assignment commands

An assignment can take one of the following formats:
(1) var = var/constant;
(2) var ={const_0, const_1, const_2, , const_n};
(3) var = “string...”;
(4) var = -var;
(5) var = <state_name>; var = <label_name>;
(6) var = var op var/constant;
(7) var =func_name(arg_1, arg_2,..., arg_n);
(8) state = conditional expresses;
(9) var op= var/constant;

Unless other specified variables in the functions’ descriptions, any variable can be short,
long or 32-bit float. Users may mix a short, long, and float variables in the same
statement.

“arg_1, arg_2,..., arg_n” in case (7) stand for variables, where the last argument in any
function is allowed to be also a constant.

When assign short variable to a long data, the MSB word will be lost. When assign
long variable a to short data, the data is sign extended (excepts for the unsigned
function). Assignment form float to long/short will be incorrect if the value of the float
variable is outside of the range of the long/short variable.

A constant can be interpreted as a character code.

Notes:
¢ In case (1), no more than one side of the equation is allowed to be a slave variable.

¢ In cases (4), (5), (6), (7), only the left side of the equation is allowed to be a slave
variable.

e <op> can be one of the following operators:
» + (add)

> - (subtract)

> * (signed multiplied)

» | (divide)

» & (logic and)

> | (logic or)

» @ (logic xor)

> % (mode, take reminder of divide)

>

~ (invert)

Operation assignment are:

HIWIN Mikrosystem Corp. 11

PDL Reference Manual for D-series Drives v1.1 2. Commands

“+:"1 “-:”1 “*="l “/:”’ “&:", “|:"’ “@:", “%:”'

That is instead of writing for example “varl=varl+var2”, users may write
“varl+=var2”. Operation assignments are shorter in code, executes faster, and are
more convenient.

Example :
#short x,y,ar[100],YS,DN,EL; I/l Declare short user variable/array

#long pl,p2,pr[60]; /I Declare long user variable/array
#float f1,f2;

f1=0,5;

f2=f1*4000;

p1=600000;

p2=p1l;

pr[5]=p1;

pr=400; /I Equivalent to pr[0]=400;
pr=0x02FC; /I Constant written in Hexformat.
X=7; y=5;

pr[x]=pr[y]+400000;

X=X &Y;

ar[x]=ar[2] * ar[y];

ar[x]=ar[x] * ar[y];

wait 20; /[wait 2.5 frames till p1 to be updated with ref_pos of axis 2
p2=p1+100000; // now can use p1l variable
ar={1,3,5,6,900,-8000}; // Init first 6 variables in array
ar[2]={1,3,5,6,900,-8000}; // Init 6 first items in array start from 2
xX=3;

ar[3]={1,3,5,6,900,-8000}; // Init 6 first items in array start from 3

YS={100,200,300}; /l'i.e., YS=100; DN=200; EL=300;

X+=y; /I x=x+y, operation assignment

x*=0.5; Il x=x*0.5, operation assignment
Notes:

The initialization of array is able to be started at any element, and assigns a
series of values to following elements one by one. Only up to 7 values can be
assigned to array at a time in the initialization of array.

Example:

HIWIN Mikrosystem Corp. 12

PDL Reference Manual for D-series Drives v1.1 2. Commands

#long array[100];
array[0] ={10, 11, 12, 13, 14, 15, 16}; // Initialize ‘array’ starting from the
// Oth element to 6th element of ‘array’. array[0]=10,
/I array[1]=11,...... , array[6]=16.
array[7]1={17, 18, 19, 20, 21, 22, 23 };

2.1.1. Index auto increase

The index to array can be incremented automatically.
Example:

#short n,p;

#long myar1[10], myar2[10];

n=0; p=0;

loop (10) do

myarl[n+]=myar2[p+];

end;

Notes:

The index to array is incremented after getting the value. The destination variable index
is incremented after the source variable(s) index incremented. So if users want to use
the one index (say n) for both destination and source, they should replace the
assignment statement in the example by

myarl[n+]=myar2[n]; // The increment is on the destination variable index.

2.1.2. Auto increment/decrement

o

To increment/decrement long/short variable, users can use “++” or “-* operator.

Example:
#long *po, myvar[10]; I/l Define pointer and array
myvar ++; /l The same as: myvar = myvar +1;
myvar --; /[The same as: myvar = myvar -1;
myvar [4]++;
myvar [n]++;
po=&myvar;
*po++; Il'i.e., myvar++;
*po[1]++; Il'i.e., myvar[1]++;

*po[n]++; Il'i.e., myvar[n]++;

HIWIN Mikrosystem Corp. 13

PDL Reference Manual for D-series Drives v1.1 2. Commands

2.1.3. State assignment

The assignment of the state/condition expression to variable (float/long/short) is
possible by using the keyword ‘sttovar’.

Example:
#long varl[5], var2;
#float f1;
varl= sttovar s2; // Simple state assignment
varl[var2]= sttovar ~s2;
varl[3]= sttovar (s2 & ~s3) | (~s2 &s3);
f1 = sttovar s1 | (s3 &v2>1000) ;
varl =sl1 & var2->3 &var2->10 // This variable is set to 1 if the logic

/I expression is true, and to O if it is false.

2.1.4. sizeof

The sizeof command is used to return the size of array.
Example:
#long myarray[275], onevar;
var = sizeof(myarray); // Assign the size of ‘myarray’ to ‘var’ (‘var'=275)

var = sizeof(onevar); // Assign the size of ‘onevar’ to ‘var’ (‘'var'=1)

Notes:

The statement of sizeof in PDL is similar to that in C/C++. In PDL, it will return the size
of array; however, in C/C++, it will return the size of object (unit is byte).

HIWIN Mikrosystem Corp. 14

PDL Reference Manual for D-series Drives v1.1 2. Commands

2.2. Program flow commands
2.2.1. halt

Format:
halt;

When a task arrives to halt command, it stops execution. At this time, the task is at the
idle state and is available for run commands internally or externally.

2.2.2. wait, sleep

Format:
wait <local variable/constant >

sleep <local variable/constant >

The wait/sleep command holds the execution of task for a period specified by the
argument. The time delay is calculated by:

sleep: value * 0.001lsec = 20 phases

wait: value * 0.00005 sec = 1phase

The important difference between wait and sleep commands is that the sleep
command puts the task in the state without consuming slots time (phases). So, other
tasks may run more quickly.

Examples:
#short dd,x,ar[20];
sleep 1000; /l Wait for 1 sec
dd=2000;
sleep dd; I/ Wait for 2 sec
ar[4]=5000;
ar[5]=7000;
X=5;
wait ar[4]; I/l Wait for 0.25 sec (5000*0.05 msec)
sleep ar[x]; /I Wait for 7 sec

Notes:

The sleep/wait command doesn’t work well with pointers. For example if you want to do
#long *ps,t
ps=&anyvar,;

HIWIN Mikrosystem Corp. 15

PDL Reference Manual for D-series Drives v1.1 2. Commands

Sleep *ps;

Please use this format instead.
t=*ps;
sleep t;

Don’t use the sleep command between lock and unlock commands, and use the wait
command instead.

2.2.3. goto

Format:
goto <label>;

The goto command transfers the execution to the location marked by the label, which is
any string (25 character maximum length) and marks the location in the program. The
label should be ended with *:’.

Example:

goto local,

local:

2.2.4. Indirect goto

Format:

goto <label>[<var/constant>];

Example:
#short indx

goto label_tab[2]; /I Relevant to jump to func2

indx=3;

goto label_tab[indx]; // Relevant to jump to func3

label_tab:
goto funcO;

goto funcl;

HIWIN Mikrosystem Corp. 16

PDL Reference Manual for D-series Drives v1.1 2. Commands

goto funcz;
goto funcsg;

goto func4;

2.2.5. call, ret

Format:
call <label>;

The call command transfers the execution to the location marked by this label, and
pushes the current location to stack. The ret command is a return from subroutine (i.e.
pops back the location from stack and returns to this location).

Example:
call subri;

subrl;

ret;

The maximum number of nested call commands (together with loop commands)
depends on the size of stack. Each call command uses one stack location. However,
the call of procedure takes more stack locations (depending on the number of
parameters and temporary variables that it uses).

Notes:

The task that runs externally (from host) also can be ended by the ret command.
However, the task that runs after the reset (by using the directive #task/n) should not be
ended by the ret command (only by halt). If users want to pass parameters to
subroutine, they should use procedure instead of using the call/ret mechanism.

2.2.6. exitproc

Format:

exitproc;

This command is used to exit from procedure. Normally, the program exits from
procedure when it arrives to the end command, that closes the do command after the
procedure header. Use this command to exit in the middle of procedure.

HIWIN Mikrosystem Corp. 17

PDL Reference Manual for D-series Drives v1.1 2. Commands

Example:
proc funcl(long flag) do

If (flag=-1) exitproc; /I Exit the procedure of funcl in the middle
end; // Exit from the procedure in the end

2.2.7. loop

Format:

loop(<local variable/constant>) do

end;

The loop command executes commands in the block (from do to end) n times, where n
is specified by a local short variable or a constant. If n = 0 and n is interpreted as an
unsigned number, the block will be executed 65536 times. If the argument is long, only
the LSB word is taken.

Example:
nk=20;
loop(nk) do /I Execute the block 20 times.
posl=pos2;
loop(100) do /I Execute the block 100 times.
end:;

end;

The maximum number of nested loop commands (together with call commands) is
defined by the size of stack for each task.

2.2.8. if, else

The if and else commands take one of the following formats:
a. if (conditional expression) command;

b. if (conditional expression) do

HIWIN Mikrosystem Corp. 18

PDL Reference Manual for D-series Drives v1.1 2. Commands

end;

c. if (conditions expression) do
else do
end;

Where the conditional expression is the logic combination of several conditions or only
one condition, i.e. the condition has the following format:

(conditionl [&/] contidion?2] [&/| contidion3]....)

The conditional expression may be nested by using ‘(), and can be inverted by using ‘~'.
Only the length of lines will limit the number of conditions.

In the case a, it does not allow to use the wait, state assignment, another if, while, till,
or loop command. The condition takes one of the following formats:

(1) <state>

(2) ~<state> /[That is not state.

(3) <<var>> /l The var is a variable that contains the state number.
(4) <~<var>>

(5) ~(conditions expression)

In cases (3) and (4), variables assume to store state address (bit number). The relation
can be one of the following operators:

Q= /l Equal to

(2) > /I Greater than

()< /I Less than

(4) >= Il Greater than or equal to
(5) <= /Il Less than or equal to

(6) <> // Not equal to
(7) TOUT /I Time out detection. Find the full description of this operator below.

The maximum level of nested if or else commands (together with loop and while
commands) is limited by the compiler to 200. The '&' is for ‘logic and' of conditions, the '|'
is for ‘logic or' of conditions, and the ‘~’ is for ‘logic invert’ of condition.

Example:
pos2=-100000;

if (p0s1>100000 | posl<pos2) do
if (p0s1>1000000) do

HIWIN Mikrosystem Corp. 19

PDL Reference Manual for D-series Drives v1.1 2. Commands

abspos=pos2;
else do
abspos=-pos2;
end;
if (LEFT_LIM) call subl;
end;
#short st;
st= <LEFT_LIM>;
if (<st>) pos2=p0s2+100; // If the left limit is triggered, do pos2=pos2+100.
if (~<st>) pos2=pos2-100; // If the left limit is not triggered, do pos2=pos2-100.
if (p0s>1000) call funcl; //If the condition is hold, call funcl.
if (p0os>1000) goto labell; // If the condition is hold, goto labell.
if (pos>1000) funcl(pos,300); // If the condition is hold, call funcl(pos,300).
if (p0s>1000) sleep 100 ; //If the condition is hold, wait for 0.1 sec.
if((stl &~st2) | (~stl & st2)) call subl; //If stl xor st2, call subl.
if(~((stl &~st2) | (~stl & st2))) call subl; // If st1 not xor st2, call subl.

Notes:

e The else command replaces the end command to close the do block of if
command. It has the same nesting level as the if command.

. In the case a (if (conditional expression) command;), it is not to use the else
command.

. In the case a, if the length of condition and command is less than the length of
command buffer, the if command may be executed within 50 usec.

2.2.9. while

Format:

while (conditional expression) do

end;

The conditional expression has the standard format (referring to if and else commands).
The block from do to end is executed when conditions are satisfied. The maximum level
of nested while commands (together with loop, if, and else commands) is limited by
the compiler to 200.

HIWIN Mikrosystem Corp. 20

PDL Reference Manual for D-series Drives v1.1 2. Commands

2.2.10. till

Format:
till (conditional expression);

By using this command, the task holds the execution until conditions are met.

Example:
till (X_ref_p0s>20000 & ~X_run); // Waittill X_ref pos is greater than 20000

/I counts and the motor X stops runing, then the next command is excuted.

2.2.11. TOUT condition

Format:
If (ceenenee v1 TOUT v2/constant)
till (vnvenee v1 TOUT v2/constant)
while (........ v1 TOUT v2/constant)

Here, v1 and v2 should be announced to integer variables. Besides, the condition of
TOUT has the same syntax as other conditional operators (=, >, <, <=, >=, <>). This
condition is TRUE if the following condition is satisfied:

fclk-vl >=v2;

where fclk is a 32 bit integer variable of system and counts with 20000Hz. tBy using ‘~’,
the condition can be inverted (as in other conditional statement). For example:

till(~(v1 TOUT v2)); // Waittill fclk - vl <v2
The following example can be used to understand the motivation of using this operator.
Example:
#long timeout,tend;
timeout=60000;
X_jvI=2000; /I Let motor move by using Jog
tend=fclk+timeout; /I Calculate the end time of excuting Jog
till (X_homed | fclk>=tend); // Wait till arriving the home or flck passes 3 seconds.
X_stop_m=1, /I Stop motion.
if (fclk>=tend) do
printl/101(“ERROR time out when search home limit”);
else do
printl/101(“OK, found home limit”);
end;

This code works well till the fclk counter wraps around from the biggest 32 bit integer
value (2731-1) to the smallest negative 32 bit integer value (-2731). The fclk wrapping

HIWIN Mikrosystem Corp. 21

PDL Reference Manual for D-series Drives v1.1 2. Commands

around happens first time after about 30 hours and every next 60 hours. When fclk
wraps around, there is a risk that the till command mayl not be executed properly. One
way to overcome this problem is to replace the till command by using the if command
and a loop, as the following example.
Example:

#long timeout,t0, tmp;

timeout=60000;

X_jvI=2000; /I Let motor move by using Jog
tO=fclk; // Recorde the start time
waitloop

tmp=fclk-t0; // Calculate how much time passes from t0
if (~X_home & tmp < timeout) goto waitloop; // If the motor does not arrive the
/' home and it is not time out, go to loop.
X_stop_m=1; // Stop motion.
if (tmp>=timeout) do
printl/101(“ERROR time out when search home limit”);
else do
printl/101(“OK, found home limit”);

end;

This code will work well even when fclk wraps around, but it needs 2 commands to
execute in continuous. Therefore, the home state is tested only every 2 commands (and
not each command by using till). So, it is recommended to use the TOUT operator as
follows.

Example:
#long timeout, t0;
timeout=60000;
X_jvi=2000; /I Let motor move by using Jog
to=fclk; /l Recorde the start time
till (X_home | t0 TOUT timeout); / Walit till arriving the home or flck passes 3
Il seconds.
X_stop_m=1; /I Stop motion.
if (t0 TOUT timeout) do
printl/101(“ERROR time out when search home limit”);
else do
printl/101(“OK, found home limit”);

end;

HIWIN Mikrosystem Corp. 22

PDL Reference Manual for D-series Drives v1.1 2. Commands

2.3. Build in functions

Functions are built-in routines, which get arguments, do some processes on them, and
store the result in the variable. They may be considered as another type of assignment
statements, but not like procedures that are user-defined and do not return the value.
The general format of function is:

<var>=func_name(arg_1, arg_2, ..., arg_n);

where arg_1,..., arg_n must be local variables, and the last argument can be a
constant.

2.3.1. max, min

The max and min functions have the following format:
<var>=max(<var>,<var/constant>);

<var>=min(<var>,<var/constant>);

The max and min functions may replace the if-else statement. For example, the
statement

if(varl>var2) do var3=varl; else do var3=var2; end;
can be replaced by

var3=max(varl,var2);
And the statement

if(varl>var2) do var3=var2; else do var3=varl; end;
can be replaced by

var3=min(varl,var2);

2.3.2. abs

Format:
<var>=abs(<var/constant>);

This function takes the absolute value of the argument. For example, the
statement:

if (var2>0) do varl=var2; else do varl=-var2; end;
can be replaced by:
varl=abs(var2);

2.3.3. sign

Format:

<varl>=sign(<var2/constant>);

HIWIN Mikrosystem Corp. 23

PDL Reference Manual for D-series Drives v1.1 2. Commands

If the argument is positive, the result is 1. If the argument is negative, the result is —1. If
the argument is equal to 0, the result is 0.

2.3.4. sin, cos

Format:
<varl>=sin(<var2/constant>);

<varl>=cos(<var2/constant>);

The unit of argument is radian.

2.3.5. sqrt

Format:
<varl>=sqrt(<var2/constant>);

Perform the square root of var2, and assign the result to varl. If the argument is
negative, the result will be also negative.

2.3.6. divi

Format:

<varl>=divi(<var2>, <var3/constant>);

The integer part (not rounded) of var2 dividing by var3/constant is assigned to varl.

The following example illustrates the difference of divi from standard divide operation.

Example:

#longr, p;

#float f;

p=11;

f=p/4; [£=2.75

r=pl/4, Il r=3 (After rounding)

f=divi(p,4); //f=2
r=divi(p,4); //r=2

2.3.7. shift

Format:

<varl>=shift(<var2>, <var3/constant>);

HIWIN Mikrosystem Corp. 24

PDL Reference Manual for D-series Drives v1.1 2. Commands

This function takes var2 as an integer and shifts it by n bits, where the value n is
specified by the last argument (var3/constant). If n>0, do the left shift; while if n<0, do
the right shift.

Example:
#long rl,r2,rsl, rs2;
r1=0x000000F0; //r1=1111 0000
rsl=1; rs2=-2
r2=shift(rl, rsl); // r2 will be setto 1 1110 0000
r2=shift(rl, rs2); // r2 will be setto 11 1100
r2=shift(rl, -8); // r2 will be setto 0
r2=shift(rl, -4); // r2 will be set to 1111
r2=shift(rl, 0); I/ r2 will be set to 1111 0000 (r1=r2)
r2=shift(rl, 4); /I r2 will be set to 1111 0000 0000
r2=shift(rl, 8); /I r2 will be set to 1111 0000 0000 0000
r2=shift(r1,12); /1 r2 will be set to 0OxO0O0F 0000 (Hex)
r2=shift(rl, 24); // r2 will be set to 0xFO00 0000 (Hex)
r2=shift(rl, 27); // r2 will be set to 0x8000 0000 (Hex)

2.3.8. bitset, bitclr, bittog

Format:
<varl>=bitset(<var2>, <var3/constant>);
<varl>=bitclr(<var2>, <var3/constant>);

<varl>=bittog(<var2>, <var3/constant>);

The bitset function sets a specific bit in the variable (the bit number specified by the last
argument var3/constant). The bitclr function clears a specific bit in the variable.
Moreover, the bittog function toggles a specific bit in the variable.

Example:
#Long v1,v2
v1= bitset (v1, 0); /l v1=0x0000 0001

v1= bitset (v1, 1);
vi1= bitclr (v1, 0);
v2=31,;

v1l= bitset (v1, v2);
v1= bittog (v1, 4);
v1= bittog (v1, 4);
v1= bittog (v1, v2);

HIWIN Mikrosystem Corp.

/1 v1=0x0000 0003
/1 v1=0x0000 0002

/1 v1=0x8000 0002
/1 v1=0x8000 0012
/1 v1=0x8000 0002
// v1=0x0000 0002

25

PDL Reference Manual for D-series Drives v1.1 2. Commands

2.3.9. memcpy

Format:
<varl>=memcpy(<var2>, <var3/constant>);
where varl: destination variable/array;
var2: source variable/array;
var3: n =the number of variables to be copied (must be long/short type).

This function copies one array to other array. It is much faster to copy arrays with the
memcpy function than performing a loop of assignments. This function does not do type
conversion between float and long/short. That is both var1 and var2 should have the
same type.

Example: (copy array I1 into 12)
#long 11[3], 12[3];
11={0x01020304,0x11223344,0xaabbccdd}; // Initialize array 11
[2=memcpy(11,3); /I Copy array 11 to 12
halt;

The execution time for this command depends on the number of variables to be copied
according to:

np=1+var3/20; (np=the number of phases)

Notes:

The value of var3 is not limited, but users should be aware of the array sizes of source
and destination to avoid exceeding the memory size. If var3<=0, this function is no
effect.

2.3.10. memset

Format:
<varl>=memset(<var2>, <var3/constant>);
where varl: destination variable/array;
var2: source variable value;

var3: n = the number of variables to be set (must be long/short type).

This function sets the content of var1l to that of var2. It is much faster to set array with

the memset function than performing a loop of assignments. This function does not do
type conversion between float to long/short. That is both varl and var2 should have

the same type.

HIWIN Mikrosystem Corp. 26

PDL Reference Manual for D-series Drives v1.1 2. Commands

Example: (clear array 11)
#long 11[3].t;
t=0;
[1=memset(t ,3); // Clear array |1

The execution time for this command depends on the number of variables to be set
according to:

np=1+var3/40; (np =the number of phases)

Notes:

The value of var3 is not limited, but users should be aware of the array sizes of source
to avoid exceeding memory. If var3<=0, this function is no effect.

2.3.11. memmin, memmax

Format:
<varl>=memmin(<var2>, <var3/constant>);
<varl>=memmax(<var2>, <var3/constant>);
where varl: destination variable;
var2: source array;
var3: n = the number of variables in the array (must be long/short type).

These functions find the minimum/maximum of array. It is much faster to get the result
by using these functions than by performing a loop. These functions do type conversion
between float to long/short. That is varl and var2 may not have the same type

Example:
#long 11[3],mina,maxa;
11={4,11,8};
mina=memmin(l1 ,3); /I mina=4
maxa=memmax(l1 ,3); /I maca=11
halt;

The execution time for this command depends on the size of array (var3):
np=1+var3/40; (np =the number of phases)

Notes:

The value of var3 is not limited, but users should be aware of the array sizes of source
to avoid exceeding memory. If var3<=0, this function is no effect.

HIWIN Mikrosystem Corp. 27

PDL Reference Manual for D-series Drives v1.1 2. Commands

2.3.12. memsum

Format:
<varl>=memsum(<var2>, <var3/constant>);
where varl: destination variable;

var2: source array,
var3: n = the number of variables in the array (must be long/short type).

This function calculates the sum of array. It is much faster to get the result by using this
function than performing a loop. This function does type conversion between float to
long/short. That is varl and var2 may not have the same type.

Example: (find average)
#long 11[3], avr;
11={2,11,8};
avr=memsum(11,3); //avr=21
avr=avr/3; /lavr=7
halt;

The execution time for this command depends on the size of array (var3):

np=1+var3/40; (np =the number of phases)

Notes:

The value of var3 is not limited, but users should be aware of the array size of source to
avoid exceeding memory. If var3<=0, this function is no effect.

HIWIN Mikrosystem Corp. 28

PDL Reference Manual for D-series Drives v1.1 2. Commands

2.4. Special commands
2.4.1. printl, retprintl

The format of printl/retprintl command is:
printl/mode1/mode2 (“ String.....”, varl, ..., varN);
retprint/mode1/mode2 (“.... String.....”, varl, ..., varN); // printl and ret
where model: hex parameter with 8 characters, which defines color, beep, print format;

mode2: hex parameter with 8 characters, which defines the event information.

The expression in the bracts ‘()’ has the similar format as that in the standard C
language. The retprintl command combines 2 commands, ret and printl, which are
executed at the same phase. This is useful when ret terminates the task which is
triggered by the host, and printl sends the event to the host about the end of task. It
ensures that the event will be received by PC when the task was already terminated.
There is no delay from printl to ret in retprintl. However, if printl and ret are executed
separately, it may take more than one phase when another tasks are running and/or
other task enters to lock state exactly after this task executes printl and before
executes ret.

Notes:

The maximum number of variables allowed is 8, while the minimum number of variables
is 0. Formats of model and mode2 are in Hex. Please do not put the ‘Ox’ prefix here.

Example:
printl/00000103/00000001(“This is a test”);
printl/00000103/00000002(“position of axis 2 is: %g ”,ref_pos[2]);
printl/00000103/00000003(“position of axis 2 is: %g ”,ref_pos[2]);

2.4.2. printl/retprintl + parameters

PDL version 2+ supports the improved printl, which sends the optional parameters in
real time. This printl supports any variable/state which can be printed, and also
variable/state which is undirected by the index of pointer or array. Also, the local variable
can be printed.

Example:
#long *pn , n, ar[10];
pnn=&pnn;
n=2;

printl/103(“*pnn=%08x , n=%lId , n address is %08x , ar[2]=%lId ”,*pnn, n, &n, ar[n]);
printl/103(“state IN1=%d ”, IN1);

proc func(long v1, float f2 , instate run) do

printl/103(“local variables: v1=%Id, f1=%g , state=%lId ”,v1,f1, <run>);

HIWIN Mikrosystem Corp. 29

PDL Reference Manual for D-series Drives v1.1 2. Commands

end;
ar="this is a test"; I/l Assign the string of 14 characters to array
printl/103("the string is: %s ",ar[0], ar[1], ar[2], ar[3]); // Printl the string

Notes:

e To print the string stored in the array, users should provide the exact amount of
the relevant variables contained in the string. Here, each long array contains up
to 4 characters.

e From the example, users can observe that values can be printed in various
formats (not only as double float with %g). Use %q (as well as %G, %f, %e,
%E) only for float values. Use %x to print the integer in Hex format, %d or %u
to print the integer in the decimal format (signed or unsigned), and %s to print
the string. The conventional format of print is the same as the printf command
used in C/C++ language.

e The parameter is sent in real time.

e The syntax of printl/retprintl in the improved version is the same as before.
The user should be aware of %g only for float variables (all variables are no
more treated as double type).

Important:

Users must put a space after each format identifier in order to format the value
correctly.

Example:
The procedure gets a flag to select the appropriate printl message from a jump table.

proc printMsg(long flag, long p1, float p2) do
if(flag<0 | flag>=5)do
printl/101("flag=%ld out of orange 0...4",flag);
exitproc;
end,;
flag=flag*5; /I The length of printl + 2 parameters + exitproc is 5
goto prlabel[flag]; /Il Indirect goto
prlabel:
printl/103("MSG A, p1=%ld p2=%g ",p1,p2); exitproc;
printl/103("MSG B, p1=%Ild p2=%g ",p1,p2); exitproc;
printl/103("MSG C, p1=%ld p2=%g ",p1,p2); exitproc;
printl/103("MSG D, p1=%ld p2=%g ",p1,p2); exitproc;
printl/103("MSG E, p1=%ld p2=%g ",p1,p2); exitproc;
end;

HIWIN Mikrosystem Corp. 30

PDL Reference Manual for D-series Drives v1.1 2. Commands

Note that, the flag is multiplied with the code length of “printl +2 direct parameters +
exitproc”, which is equal to 5 in this case.

Example: (call the procedure)

_al:
printMsg(0,17,4.2);

ret;

_az:
printMsg(1,ltestl,ff1);

ret;

_a3:
printMsg(ltest2,ltest1,ff1);

ret;

2.4.3. set, clear, toggle state

Format:
seton <state_name | <var> >
setoff <state_name | <var> >

toggle <state_name | <var> >

These commands modify the statuses of state variables. If the state represents an input
bit or internal state (i.e. the state that is updated every frame from the DSP software), to
modify the state will be only for a short time till the next internal updating. These
commands are mainly used for states that represent outputs.

Example:
seton vacum_sl // Turn on the vacuum solenoid

sleep 1000
setoff vacum_sl // Turn off the vacuum solenoid

HIWIN Mikrosystem Corp. 31

PDL Reference Manual for D-series Drives v1.1 2. Commands

2.5. Directive

Directives are commands executed in the compilation time. All directives begin
with the character ‘#.

2.5.1. task

Format:
#task/<n>;

This command initializes the task with the specified number to locate at the program,
where n is the task number.

Example:
pl=p2;
halt;
#task/2; I/l The task 2 will start to run from this point after the drive is reset.

call initt2;

The task, which is not initialized by this command, will be in the idle state after reset.
The idling task can be operated by other tasks, which execute the run command, or
externally by host. The task cannot be initialized more than once. The task that operates
with task directive starts to run after the drive is reset, and may be terminated by the halt
command.

2.5.2. long, short, float

Format:
#short [_ro] [_Ip(vl,v2)] str_1, str_2,, str_n;
#long [_ro] [_Ip(v1,v2)] str_1, atr_2,, str_n;
#float [_ro] [Ip(vli,v2)] str_1, atr_2,, str_n;

where str_1,, str_n can be any string (up to 15 characters, key characters are not
allowed). If users want to declare array, please use brackets ‘[]' and put the array size
within them.
Example:

#long u,k,yosi,my_array[200],tmp_array[800];

#float _ro v1; //v1isread-only.

The _ro and _|p are optional and is defined as read-only and/or level protected
attributes. They are applied only to access variables from host.

These commands are used to declare user variables (long and short lengths). For every
user variable, the compiler allocates an address in the user data memory in the drive.
The variable name is recognized from the point, where it was declared. #long, #float,
and #short can appear more than once in the program. After compiling the file

HIWIN Mikrosystem Corp. 32

PDL Reference Manual for D-series Drives v1.1 2. Commands

successfully, float variables will be stored in USER_n.vrs by using 32 bit length (as long
variable). The compiler will save float variables to the address of bit 29 to 1. Also, when
users want to declare pointers, *’ should be put in front of variable name.

Example:
#long v1, *pvv;
#float ff, *pff, *pfp;

No short pointers. Please use pointers with long type to point variables with short type.

2.5.3. define

Format:
#define str_astr_b

#define str_a(arg1,arg2...argn) longstring

This command has 2 syntax formats. In the first format, the compiler will replace the
string str_a with the string str_b anywhere. This command is useful to define constants.

The second format (supported to PDL compiler with version 25+) allows the creation of
function-like macros. This format accepts an optional list of parameters that must
appear in parentheses. When referring to the argument of original definition, it can be
replaced by the token-string argument, which has actual arguments substituted for
formal parameters. The macro can use other already defined macros.

Example 1:
#define ADD2(r,a,b) r=a+b;
#define ADD3(r,a,b,c) ADD2(r,a,b) r+=c;

#define ADD4(r,a,b,c,d) ADD3(r,a,b,c) r +=d;

#long result,varl,var2,var3,var4;

ADD4(result,varl,var2,var3,vard) // result = varl+ var2+ var3+ vard

The macro can be written in more than one line. Users should use the ‘\' in the end of
each line but not in the last line.

Example 2:

#define LONGCODE varl=var2+var3;\
fi1=ff2*ff3;\
someproc(varl,varb)\
call somelabel;\

var++;

LONGCODE // execute commands grouped by the macro LONGCODE

HIWIN Mikrosystem Corp. 33

PDL Reference Manual for D-series Drives v1.1 2. Commands

Notes:
(10) If the macro is ended with *;’, ;" is considered as the part of str_b.
Example:
#define size 10;
#long array[size]

The definition of array will be replaced by array[10;], which will fail in the
compilation. In this case, users should avoid ending the macro with ';’, that is

#define size 10

(11) The syntaxes of #define, #undef, #ifdef, #ifndef, #else, and #endif are
similar to high/low level languages, such as C, C++, Assembler.

2.5.4. undef

Format:

#undef string

Use to remove the macro previously defined by #define.

Example:
#define KEY STRING1

#undef KEY
#define KEY STRING2

2.5.5. ifdef, ifndef, elifdef, elifndef, endif

Format 1:
#ifdef KEY
code a
#endif

If KEY is defined, the code a is compiled; otherwise, it is ignored.

Format 2:
#ifdef KEY
code a
#else
code b
#endif

HIWIN Mikrosystem Corp. 34

PDL Reference Manual for D-series Drives v1.1 2. Commands

If the KEY is defined, the code a is compiled, else the code b is compiled.

Format 3:
#ifndef KEY
code a
#else
code b
#endif

If the KEY is not defined, the code a is compiled, else the code b is compiled. Users
can use #elifdef or #elifndef to make the sequence of conditions following the start of
#ifdef/#ifndef.

Example:
#ifdef KEY1
code a
#elifdef KEY2
code b
#endif

If KEY1 is defined, only the code a will be compiled, else the code b will be compiled if
KEY2 is defined.

Every block started by #ifdef/ifndef should be ended with #endif. The nested ifdef is
allowed. That is the code a and code b may be composed with other source
directives/macros, such as #define, #undef, #ifdef as well as normal commands.

2.5.6. include

Format:
#include <filename>

When the compiler arrives at this command, it begins to compile the file, which is
specified by filename. When the file compiling is finished, the compiler returns to the
original file. Up to 20 nesting includes are allowed.

Example:
#include “..\common.h”

HIWIN Mikrosystem Corp. 35

PDL Reference Manual for D-series Drives v1.1 1. Preface
PDL Reference Manual for D-series Drives
© HIWIN Mikrosystem Corp.
HIWIN Mikrosystem Corp. 36

	PDL Reference Manual for D-series Drives
	Table of Contents
	1. Preface
	1.1. About the manual
	1.2. Multitasking
	1.3. Variable Type
	1.4. Procedure

	2. Commands
	2.1. Assignment commands
	2.1.1. Index auto increase
	2.1.2. Auto increment/decrement
	2.1.3. State assignment
	2.1.4. sizeof

	2.2. Program flow commands
	2.2.1. halt
	2.2.2. wait, sleep
	2.2.3. goto
	2.2.4. Indirect goto
	2.2.5. call, ret
	2.2.6. exitproc
	2.2.7. loop
	2.2.8. if, else
	2.2.9. while
	2.2.10. till
	2.2.11. TOUT condition

	2.3. Build in functions
	2.3.1. max, min
	2.3.2. abs
	2.3.3. sign
	2.3.4. sin, cos
	2.3.5. sqrt
	2.3.6. divi
	2.3.7. shift
	2.3.8. bitset, bitclr, bittog
	2.3.9. memcpy
	2.3.10. memset
	2.3.11. memmin, memmax
	2.3.12. memsum

	2.4. Special commands
	2.4.1. printl, retprintl
	2.4.2. printl/retprintl + parameters
	2.4.3. set, clear, toggle state

	2.5. Directive
	2.5.1. task
	2.5.2. long, short, float
	2.5.3. define
	2.5.4. undef
	2.5.5. ifdef, ifndef, elifdef, elifndef, endif
	2.5.6. include

