HIWIN MIKROSYSTEM CORP.

LINEAR SERVO PLANAR MOTOR (LMSP) USER'S MANUAL

Version 1.0.2 Feb. 6, 2002

TABLE OF CONTENTS

I.	GENERAL INFORMATION1
II.	SYSTEM DESCRIPTION
	Product Features3
	System3
	Controller Box3
	Motor
	System Specifications6
	Reference Numbers7
	LMSP Dimensions8
	Controller Box Dimensions and Connections9
	DSP C32 Card10
	Interface of DSP C32 Card 11
	UC48 Card12
	Interface of UC48 Card13
	IDP4 Card14
	Interface of IDP4 Card15
	MB5 Board
	PU2 Card17
	PAT Board
	Power Board18
	Motor
	HS4 Board19
III.	SYSTEM SETUP
	Before You Start
	Hardware Installation20
	Motion Controller20
	Motor
	Controller Box
	Cables
	Connection of Controller Box (LMDX) and User's Controller
	Pin Assignment of LMDX IDP422
	IDP4 and Controller23
	IDP4 and PLC24
	Connection of Motor and Driver25
	HS4 and UC48
	Driver to Motor Cable25
IV.	SYSTEM STARTUP

	Communication Settings	26
	Command Usage	26
	Simple Examples	27
V.	SYSTEM OPERATION	29
	Stand-alone Mode	29
	Calibration	38
VI.	PROGRAM DOWNLOAD FROM PC TO DSP	39
VII.	HELP	46
APP	ENDIX A PULSE COMMAND FORMAT	47

I. GENERAL INFORMATION

Linear Servo Planar Motor, abbreviated as LMSP hereinafter, is a planar motor with built-in position sensors. With *Hiwin Mikrosystem Corp*.'s advanced technology, great accuracy has been achieved before it hits the market. And *Hiwin*'s engineers keeps improving its unparalleled performance. Unlike the traditional planar stepping motors, *Hiwin*'s LMSP is a servo motor which has thrust force larger than the stepping ones at high speed. Besides, it has a lot of attractive features such as yaw control, automatic alignment, automatic homing, stall detectability, error compensation ability, and so on.

In the following sections, we'll give you the idea of how to implement with our LMSP. And the manual will be updated whenever its performance is made even better.

This manual consists of the following sections: Section I has general information of LMSP. Section II gives the description of the LMSP system, features and specifications. Section III reminds users of things to be cautious and describes the setup procedures. Section IV shows how to make communication settings and gives some examples. Section V explains how to use available commands to operate the motor. Section VI gives the users the idea about how to upgrade the software version and calibration procedures. Section VII tells *HIWIN* information for technical support. Appendix A shows the STEP/DIR pulse format to be used.

Should you have any suggestions, please contact us using the information in Section VII.

II. SYSTEM DESCRIPTION

A typical LMSP system consists of the following components: an LMSP (a forcer and a stator), a controller box (PID controller and drivers inside), a host controller (usually a computer installed with a motion control card), and required accessories.

These accessories include

- driver power cable <1>
- motor cable <2>
- sensor cable <3>
- driver-end controller cable <4>
- terminal block <5>
- host-end controller cable <6>
- RS-232 cable <7>
- air filter and regulator (user supplied)
- air pipe (user supplied)
- auxiliary 24V power supply (user supplied) for motion control card LMKPCI4P <8>

Figure 2.1 System Configuration

Product Features

System

- Closed-loop control (position sensors inside)
- Non-stall
- Auto-alignment
- Sensorless auto-homing

Controller Box

- 2 operation modes: Pulse command mode and stand-alone mode
- Simple motion program without any motion controller
- Linear and yaw error compensation table
- 3-axis control (yaw control included)

Motor

- Hybrid type planar stepping motor
- Precision position sensors
- Air bearing

For the LMSP system, the communication between each component and the power to LMDX controller box are shown in figure 2.2. The system consists of 3 parts: an LMSP motor, an LMSP controller box, and a host controller.

An LMSP motor has one planar stator with tooth structure, and one planar forcer with position sensors that discern LMSP from the commonly seen planar stepping motors. (Multiple forcers may be used for overlapped motion path; however, more drivers shall be needed accordingly.) There are 4 electromagnetic modules in an LMSP forcer where 2 modules for one direction (X1 and X2), and 2 for the other direction (Y1 and Y2). Each module is driven by 2-phase currents, i.e., phase A and phase B, to produce a reluctance force to move the forcer to an equilibrium point. 3 precision position sensors are used to inform the driver the updated position, 1 in updating direction Y, and 2 in updating direction X1 and X2. The 2 sensors for X1 and X2 are arranged symmetrically to the center, so the yaw error can be detected in addition to the X direction position. The encoder in each axis sends differential signals in sin and cos. The signals are amplified to peak to peak magnitude of 1 volt in HS4 board inside the forcer, then transmitted to UC48 board in the LMSP controller box.

An LMSP controller box has 1 power board, 1 power supply of +5V, 4 PU2 current amplifiers, 1 UC48, 1 motherboard MB5, 1 PAT board, 1 IDP4 board, and 1 DSP C32 board. The

power board provides ±36 V to the current amplifiers. The power supply provides +5V and ±12V for MB5, PAT, UC48, IDP4, and DSP C32 board. As mentioned in the previous paragraph, PU2's provide power to drive the motor. PU2-1 amplifies current to drive axis X1, PU2-2 to drive axis X2, PU2-3 to drive axis Y1, and PU2-4 to drive axis Y2. The servo board UC48 takes in analog signals from HS4 outputs, and sends commands to PU2. IDP4 may be used to receive commands from host controller or PLC (programmable logic circuit) while DSP C32 receives commands from PC through RS-232.

Figure 2.2 System Diagram

System Specifications

	Itom		Specifi	cations			
	item		LMSPX1 LMSPX2				
Design	Motor		Forcer: 3-axis (X-Y-θ) hybrid planar motor Stator: integral grid platen				
	Support		Air bearing				
	Position sensing		Direct feedback through axes (X1/X2/Y)	n position sensors in 3			
		Position	Direct feedback servo c	ontrol			
	Control	Commutation control	Amplitude/phase contro wave linear amplifier	I using 2-phase sine			
	Max. force		75N	140N			
	Max. speed		0.9m/s	0.8m/s			
	Forcer weight		1.8kg	3.7kg			
	Max. load		14kg	28kg			
L.	Air flow rate		6.4 liter/min	21 liter/min			
loto	Air supply pressure f	or bearing	3±0.3bar				
\geq	XY stage accuracy		±15µm; after compensation mapping: ±5µm				
	Position sensor	Х, Ү	1µm				
	resolution	θ	0.8 arc-second				
	Positioning resolution	Х, Ү	1µm				
	Repeatability	Х, Ү	3μm				
ntroller Box	Interface		Parameter setting: RS-232 Status signal: RDY Pulse format: STEP/DIR				
Controller Motor Box	Power supply		100 to 120V AC ±10%, single-phase 200 to 240V AC ±10%, single-phase				

Reference Numbers

Motor

Controller Box

Cables: LMACP20B (110V LMDX Power Cable, NEMA 5-15P Plug)

LMACP20F (220V LMDX Power Cable, CEE 7 Standard)

LMACD20D (Motor Cable)

LMACE20C (Encoder Cable)

LMACK20H (Driver-end Controller Cable)

LMSP Dimensions

Figure 2.3 LMSP Dimensions

Forcer

Forcer Index		X1	X2
Forcer Length	L _f (mm)	154	175
Forcer Width	W _f (mm)	184	320
Forcer Height	H _f (mm)	28	30
Fix. Distance	$A_{f}(mm) \times B_{f}(mm)$	146×87.5	72×140

Stator

Stator Index			P1	P2	P3	P4	P5	P6
Stator Size (mm)	L _s (r	mm)×W _s	350×330	450×450	650×450	600×600	1000×600	850×850
Max. Stroke (mr	n) LMSPX1 LMSPX2		196×146	296×266	496×266	446×416	846×416	696×666
(One Forcer)			175×10	275×130	475×130	425×280	825×280	675×530
Stator Height	mm)	50	50	70	70	100	80	
Stator Mass	M _S ((kg)	27	36	52	66	120	180
Fix. Distance	A _s (mm)×B _S (mm)		165×310	213×426	288×426	288×576	(318-324-318) X(280-280)	400×400

Controller Box (LMDX) Dimensions and Connections

	00000000000000 0000000000000 000000000	
	00000000000000 0000000000000 000000000	
		· · · · · · · · · · · · · · · · · · ·
40	5	
	400	

- 1. RS 232 port
- 2. IDP4 card (pulse command input) (37 pin male)
- 3. UC48 card (position feedback) (37 pin female)

- 4. Motor power
- 5. Power switch
- 6. Power input socket

 \square

7. +36V/-36V/AC power indicators

Figure 2.4 LMDX Controller Box Dimensions and Connections

DSP C32 Card

- DSP TMS320C32, 50MHz, 50Mflops, Floating-point commands, 2 timers, 2 DMA, program boot from Flash ROM or Link
- 512K x 16 bit Boot Flash ROM, 256K x 32 bit SRAM, Program easy update from RS-232
- Serial interface RS-232 up to 38400 baud rate, serial synchronous interface RS422 TI 10 M baud rate
- Watchdog Flash ROM-Software for linear and circle interpolation, 3 Axes, DIN/ISO or HPGL

Figure 2.5 DSP C32 Card

Interface of DSP C32 Card

Schematics of inputs and outputs

Figure 2.6 DSP C32 Input Interface SN74LS245

Characteristics of DSP C32 Input Interface SN74LS245

Electrical characteristics over recommended operating free-air temperature range (unless otherwise specified)

PARAMETER	MIN	TYPICAL	MAX	UNIT
V _{IH} High-level Input Voltage	2			V
V _{IL} Low-level Input Voltage			0.8	V

All typical values are at Vcc = 5 V, T_A = 25 °C.

Figure 2.7 DSP C32 Output Interface SN74LS273

Characteristics of DSP C32 Output Interface SN74LS273

Electrical characteristics over recommended operating free-air temperature range (unless otherwise specified)

PARAMETER	MIN	TYPICAL	MAX	UNIT
V _{OH} High-level Output Voltage	2.4	3.4		V
V _{OL} Low-level Output Voltage			0.4	V

All typical values are at Vcc = 5 V, T_A = 25 °C.

UC48 Card

- Control step and brushless PM motors
- 4 channels for analog inputs sin-cos-ref 11 μA for 4 encoders
- Software interpolations for encoder resolutions up to 4096 times
- Nanometer resolutions with standard 20 µm encoders
- 8 inputs analog 12 Bit 10 V bipolar for demand currents or velocities of axes
- 4 opto-coupled inputs 24 V for reference switches
- Complete control up to 4 servo-axis (Portal X1,X2,Y,Z)

Figure 2.8 UC48

Interface of UC48 Card

The interface of UC48 card is PC847 whose information is shown in figure 2.9 and listed in the bottom table.

Figure 2.9 UC48 Input Interface PC847

Absolute Maxir	(Ta = 25℃)			
	Paramter	Symbol	Rating	Unit
	Forward current	IF	50	mA
	Peak forward current	IFM	1	А
Input	Reverse voltage	VR	VR 6	
	Power dissipation	Р	70	mW
	Collector-emitter voltage	VCEO	35	V
	Emitter-collector voltage	VECO	6	V
Output	Collector current	IC	50	mA
	Collector power dissipation	PC	150	mW
Tota	l power dissipation	Ptot	200	mW
Isola	ation voltage	Viso	5000	Vrms
Оре	rating temperature	Topr	-30 to +100	°C
Stor	age temperature	Tstg	-55 to +125	°C
Solo	lering temperature	Tsol	260	°C

*1 Pulse width <= 100µs, Duty ratio : 0.001

*2 40 to 60%RH, AC for 1 minute

*3 For 10 seconds

IDP4 Card

- Step / Direction Interface for 4 axis
- Euro-board 160 x 100 mm, Eurobus connection with 64 pin connector
- D-Sub-37 connector for four Step, Dir, Reset and Ready signals
- Complete control up to 4 stepper or servo-axis (Portal X1,X2,Y,Z)
- 4 channels RS422 Interface
- Base address settings per jumper, multiple boards at the same bus possible

Figure 2.10 IDP4 Card

Interface of IDP4 Card

- Meet or Exceed the Requirements of ANSI Standard EIA/TIA-422-B, RS-423-B, and RS-485
- Meet ITU Recommendations V.10, V.11, X.26, and X.27
- Designed for Multipoint Bus Transmission on Long Bus Lines in Noisy Environments
- 3-State Outputs
- Common-Mode Input Voltage Range –12V to 12V
- Input Sensitivity ... ±200mV
- Input Hysteresis ... 50mV Typ
- High Input Impedance ... 12 k Ω Min
- Operate from Single 5V Supply
- Low-Power Requirements
- Plug-in Replacement for MC3486

Figure 2.11 IDP4 Interface SN75175

MB5 Board

- Mother Board for 5 Euro-boards 160X100mm, Eurbus connection with 64-pin connector
- Standard PC 12 pin power connection for +5V,+12V,-12V and GND power supply
- Resistance networks for address data and control bus to prevent reflections
- Ceramic capacitor for power voltages

Figure 2.12 MB5 Board

PU2 Card

- 2 current-feedback half-bridge amplifiers 48 pin
- Power supply voltage 35-50 V, output current 3 A
- Two bipolar analog inputs 10V for demand current
- Complete solution for two-phase micro-step motor

Figure 2.13 PU2 Card

PAT Board

- Euro-boards 160X100mm, Power Bus connection with four 48 pin connector
- 1 connector for power supply
- 2 connectors for 4 two phase stepping motor for 4 power amplifier PU2
- 19 inch standard rack compatible

Figure 2.14 PAT Board

Power Board

- AC Power Input with EMI filter
- AC110V and AC220V can be switching change
- Supply +36V and –36V and GND for power amplifier PU2
- Fuse Holder with 10A Fuse

Motor

HS4 Board

- 3 position sensors to detect position feedback
- 2 OPA AD824AR output A & B Phase differential signals
- Power Supply +5V and output $\pm 1V_{p-p}$

III. SYSTEM SETUP

Before You Start

- Please check if there is any damage from transportation.
- Please coat the stator surface with antirust oil or wax for keeps. Remember to wipe off the antirust oil before use next time.
- NEVER disassemble the motor or the driver. *HIWIN* is not responsible for any damage caused therewith.
- Always shut off driver power before making any wiring change.
- Study the manual thoroughly before you start.
- If you have any questions, please contact *HIWIN* or its authorized agents right away.

Hardware Installation

Motion Controller

- Refer to LMKPCI4P manual
- Terminal block, 100-pin cable, and +24V power supply are required for using HIWIN LMKPCI4P motion control card.

Motor

- Install the stator.
- Please use high-pressure air and soft textile cloth to thoroughly clean the planar motor's surface.
- Please plug in the air pipe (as shown in Fig. 1) to supply filtered, clean, dry air (pressure around $3.0 \sim 6.0$ bar dependent on load, and particle size below 3 micron).
- Gently move the forcer to ensure air is normally supplied.
- Align the forcer to the grids of stator to some extent.

Controller Box

- Fix the driver in place, and make correct shielding and ground for power supply, and so on.
- Always shut off the driver before making any change in wiring.

Cables

- Ground the cable to avoid EMC problems.
- Avoid cables cross each other.

Connection of Controller Box (LMDX) and User's Controller

Pin Assignment of LMDX IDP4 (Male)

(Applicable cable LMACK20H: 37 pin D-sub connector)

			_ .	1		Pin	Wire Color	Signal	Description
Description	Signal	Wire Color	Pin		•	1	Blue/ 1 Black dot	+5V	Signal voltage supply
			20	•	\odot	2			
			21	Θ	0	3			
			22	0	•	<u> </u>			
			00		$oldsymbol{O}$	4			
		Dhue/	23	•	\odot	5	Blue/ 2 Black dots	RYP	Reset Y +
Reset Y -	RYM	2 Red dots	24	\odot	0	6	Pink/		Depart V J
Reset X -	RXM	Pink/ 1 Rod dot	25	\odot	U	-	1 Black dot	КЛР	Resel × +
			26		•	7			
			20		\odot	8			
			27	\odot		9			
			28	\odot	U	0			
			00		\odot	10			
			29	•	\odot	11			
			30	Ο		12			
			31	0	•		Dist.		
		Pink/	20		\odot	13	2 Black dots	GYP	Ready Y +
Ready Y -	GYM	2 Red dots Green/	32	•	•	14	Green/ 1 Black dot	DYP	DIR Y +
DIR Y -	DYM	1 Red dot	33	•	•	15	Gray/ 2 Black dots	SYP	STEP Y +
STEP Y -	SYM	2 Red dots	34	Ο	•	16	Yellow/	GYP	Peady X +
Ready X -	GXM	Yellow/ 1 Rod dot	35	\odot	U		1 Black dot	GAF	Iteauy X '
	DVM	Yellow/	26		$oldsymbol{O}$	17	2 Black dots	DXP	DIR X +
UIR X -	DXM	2 Red dots Grav/	50		•	18	Gray/ 1 Black dot	SXP	STEP X +
STEP X -	SXM	1 Red dot	37	⊙	•	19	Blue/ 1 Red dot	GND	Signal ground

Sxx, Dxx, Rxx: Inputs

Gxx: Output

IDP4 and Controller

EIA-422-b Output IC is AM26LS31 or SN75174

LOGIC DIAGRAM (POSITIVE LOGIC)

SXM,SYM,SZM,SWM

DXM,DYM,DZM,DWM

GXM,GYM,GZM,GWM

RXP,RYP,RZP,RWP RXM,RYM,RZM,RW,

Figure 3.1 IDP4 Interface Connection

IDP4 and PLC

Figure 3.2 IDP4 and PLC Connection

Connection of Motor and Driver

DRIVER

IV. SYSTEM STARTUP

Wiring as shown in Fig. 2.2 after following the installation in Section III. This section takes you through the necessary procedures to make a simple test in stand-alone mode operation.

Communication Settings

A personal computer communicates with an LMDS driver, in stand-alone mode, through RS-232 to its serial port COM1 or COM2. **Be sure that the driver power is off while connecting RS-232.** Plug in the driver power cable after RS-232 has been connected. Accessory "HyperTerminal" in Windows 95/98/NT/2000 can be used for communication. In addition, a communication program named "et.exe" is included in the shipped-along *HIWIN* CD-ROM, in case "HyperTerminal" is not readily available. However, "et.exe" works only in MS-DOS mode. Run the communication program, either "HyperTerminal" in Windows or "et.exe" in MS-DOS mode. Please make the settings of the corresponding communication port in HyperTerminal as follows:

Baud rate	9600
Data bits	8
Parity check	odd
Stop bits	2

In MS-DOS mode, enter "et 1" if COM1 is used, or "et 2" if COM2 is used instead. The program itself will configure the corresponding port to the aforementioned settings.

The communication program is ready to receive commands whenever the prompt ">" is displayed on the screen. Please see Section VI for explanation of commands in details. Also, brief command explanation can be seen by using help command "?".

Command Usage

Every command line is issued after ";" or "enter" has been keyed in. Not all the commands have parameters. Those commands with parameters might have more than one parameter. A command line is parsed into the issued command and its parameters by at least one "space". If one parameter is to be changed, those parameters ahead of it are still needed, while any unchanged parameters after it can be omitted. Therefore, for a command with at least two parameters, it's unnecessary to key in all the parameters unless the last parameter should be changed. It's enough to key in the command line up to the parameter you want to change. Note that the function of a "space" is to distinguish a parameter from anything before it. If there is any space in the end of a command line, the driver will mistake that the user is going to set one more parameter's value. In other words, **ending a command line with a "space" will set any**

parameter immediately after it to zero. Therefore, it's advised that never leave any space in the end of a command line.

Simple Examples

- a) Verify the aforementioned wiring is correct and the communication is normal.
- b) Turn on the driver power. Please wait for a while to see if the forcer aligns to the grids of the stator correctly. If alignment is made successfully, the motor continues to execute automatic homing. After homing, you may go to step (d) to start basic tests. If an error message shows that the motor fails to make alignments, due to large yaw error, proceed with step (c).
- c) Whenever the motor is unable to make alignments, shut off the driver power, then manually adjust the forcer to approximately align with the grids of the stator. Start over with step (b) again.
- d) Test of command "PR". (Movement in relative coordinate)
 Issue "PR" to move the forcer +10 mm in X-axis and +20 mm in Y-axis, relative to the current position. (Note the unit of the input arguments is μm.) First, check if there is enough room in the moving direction. Then enter the following command:

PR 10000 20000

e) Test of command "PA". (Movement in absolute coordinate)

Practice to move the forcer to 0.1 mm in X-axis and 0.1 mm in Y-axis in absolute coordinate by "PA". Enter the following command:

PA 100 100

f) Test of command "FA". (Setting of velocity and acceleration)

Set the velocity and acceleration of the forcer to 10mm/sec and 1.5m/sec², respectively. Give the following command:

FA 10 1.5

g) Test of command "GS". (Homing)To do automatic homing, give the following command:

GS

- h) Practice of simple programming Example:
 - @
 FA 500 2
 PA 150000,200000
 DL 200 (delay in ms)
 FA 200 1
 - PA 0.0

@

In the above example, command "DL 200" make the forcer pause for 200 ms, or 0.2 sec., after previous motion command has been executed. Also, use command "@" to do programming, the program will be written to EEPROM automatically. After programming, you can always use the command "!" to run the program.

i) Test of pulse mode operation

First, make required settings in stand-alone mode, e.g.,

SD 1 1 50 1 1

where the first parameter 1 switches operation to pulse mode, and the fourth parameter and the fifth parameter 1 set the distance (in μ m) for each pulse to travel in axis X and Y, respectively. After setting the required parameters by commands, remember to write them to the EEPROM using the command "WE". Please refer to Appendix I and II to verify the controller's output pulse format is right and the wiring is correct. Be cautious that wiring should be done only when the driver power is off. Then you can use the controller to send STEP/DIR pulse commands to the driver.

V. SYSTEM OPERATION

Stand-alone Mode

Below each command is explained. After setting the required parameters by commands, remember to write them to the EEPROM using the command "WE".

1. Motion related commands "PA", "PR", and "DL"

a) Translational movement made in an absolute (fixed) coordinate "PA"

Usage:

"PA *xxx yyy*;"

xxx – X-axis new position, in µm. (+/- permitted)

yyy – Y-axis new position, in µm. (+/- permitted)

b) Translational movement made in a relative (moving) coordinate "PR"

Usage:

"PR xxx yyy;"

xxx – X-axis new position relative to the current one, in μ m (+/- permitted)

```
yyy – Y-axis new position relative to the current one, in \mum.(+/- permitted)
```

c) Pause for a specified period of time "DL"

Usage:

"DL *ttt*;"

ttt – duration in ms

2. Velocity and acceleration command "FA", velocity scale command "KV", and stop command "BF"

```
a) Velocity and acceleration command "FA"
```

Usage:

"FA *p1 p2*;"

p1 – velocity (mm/sec)

p2 – acceleration (m/sec²)

Both parameters should be positive. The motor moves at the velocity and acceleration specified by this command. New values go into effect after they are updated by this command.

b) Velocity scale command "KV"

Usage:

"KV *p1*;"

p1 – velocity scale; 0. < $p1 \le 4.0$

Velocity of all movements will be multiplied with the latest updated scale value.

c) Emergency stop and motion buffer memory size command "BF"

```
Usage:
```

"BF 0;"

The motor stops immediately, and unexecuted motion commands are cleared. "BF;"

displays a parameter p1, where p1 is a decimal number (0 to 31) showing the internal motion buffer memory being occupied. If p1 is 0, it means all motion commands have been executed, and the motor stops. If p1 is 31, it means all the motion buffer memory have been taken up, so it can not take any new motion command.

3. Coordinate display "DD" and "DR"

- a) Display of command position "DD"
 - Usage:

"DD;"

After executing the command, "p1 p2" will be displayed.

p1 - X-axis command position, in μm

p2 - Y-axis command position, in μm

b) Display of actual position "DR"

Usage:

"DR;"

After executing the command, "p1 p2 p3" will be displayed.

p1 - X1-axis actual position, in μm

p2 - X2-axis actual position, in μm

p3 - Y-axis actual position, in μm

4. Error related command "DE"

a) Display of errors in each axis "DE"

Usage:

"DE;"

After executing this command, "p1 p2 p3" are displayed.

p1 – rotational axis closed-loop error, in μ m.

p2 - X-axis closed-loop error, in μm

p3 - Y-axis closed-loop error, in μm

"DE 0 0 0;" clears all the errors. Other commands such as "GS;", "FX1;", "FX2;" and "RES;" also clear all the errors.

5. Analog to digital conversion (ADC) signals calibration commands "CL", "CLS", "LN", "LNS", "NP", and "GS"

a) Calibration of ADC signals "CL"

Usage:

"CL;"

This command calibrates the amplitude and offset of signals from the position sensor.

The signals are collected for calibration while the motor moves 2 mechanical pitches back and forth along axis X and Y.

b) Setting of calibration parameters "CLS"

Usage:

"CLS p1 p2 p3 p4 p5 p6 p7 p8;"

- p1 calibration velocity, in mm/s
- p2 parameter to decide if ADC calibration of the amplitude and offset is continued during motion. 0 for no; and 1 for yes.
- p3 filter factor to determine the weightings of ADC signals.
- p4 time duration for calibration, in ms.
- p5 minimum distance to travel for every calibration, in μ m.
- p6 maximum value of amplitude scale. During each calibration, the measured ADC signals with amplitude greater than 2048/p6 will be recorded.
- p7 time delay before calibration, in µs
- p8 delay time before current rise, in μs

These settings will be used in executing "CL". If the travelling distance in some axis is less than the minimum distance (set by parameter p5) during p4 ms calibration, the calibration in that axis is invalid.

c) Alignment with grids "LN"

Usage:

"LN;"

The motor makes alignments with grids of the stator.

d) Update calibrated parameters "LNS"

Usage:

"LNS;"

This command updates the calibrated variables in workspace after using "CL" and "NP".

e) Define Null angle sub-periods "NP"

Usage:

"NP;"

This command calibrates the null angle sub-periods from the position sensor. The null angle sub-periods are automatically calibrated after the motor moves 1.5 mechanical pitches back and forth along axis X and Y.

f) Homing "GS" Usage: "GS;"

The motor moves back home.

6. Power on settings command "RP"

Usage:

"RP *p1 p2*;"

- p1 decimal number. If p1 is set as –1, default system function is used. For p1 from 1 to 63, it can be decomposed into the sum of the following numbers:
 - 1 closed-loop mode after power-on
 - 2 open loop mode after power-on
 - 4 ADC signals auto-calibration
 - 8 automatic homing
 - 16 automatic alignments with grids

32 – automatic execution of motion program written to EEPROM by user.

To enable the function you want, simply assign the sum of the number corresponding to the function to p1. For example, to enable the motor to execute automatic homing, automatic alignments with grids, and motion programs, p1 should be 56 (8 + 16 + 32).

p2 – incremental/decremental ratio of velocity while stored program is executed.

7. Pulse mode related command "SD"

Usage:

"SD p1 p2 p3 p4 p5 p6;"

p1 - 1: switch to STEP/DIR mode; 0: switch to stand-alone mode.

p4 – the distance traveled in X-axis for each pulse it receives (µm /pulse)

p5 – the distance traveled in Y-axis for each pulse it receives (μ m /pulse)

8. Motion programming related commands "@", "DP", "!", and "PS".

a) Loading user's motion program to EEPROM "@"

Usage:

"@

(first line in programs)

...

(last line in programs)

@"

The capacity of memory for programs is 11900 bytes.

b) Display of motion programs "DP"

Usage:

"DP;"

Press the "Enter" key to stop display, then press any key to continue displaying next page.

c) Execution of motion programs "!"

Usage:

"!;"

Note: The following characters works during motion:

"+/-" - increases/decreases velocity

"P" - pauses/continues the execution of motion programs

"Enter" - cancels/stops the execution of motion programs

d) Step by step execution of motion programs

Usage:

"PS *p1*;"

- p1 1: Step by step execution of motion programs is enabled. (Press any key other than "Enter" to execute the motion program step by step.)
 - 0: Step by step execution of motion programs is disabled. (Default value after power-on.)

9. Display of brief command description "?"

Usage:

"?;"

Press the "Enter" key to stop display, then press any key to continue.

10. PID control related commands "KX", "KY", "KF"

Usage:

"Kn p1 p2 p3 p4 p5;"

where *n* stands for the axis it acts.

n – "X": X-axis

"Y": Y-axis

"F": rotational axis

- p1 proportional gain
- *p2* integration gain
- p3 differential gain
- *p4* acceleration factor
- p5 filter factor in the range of 0 to 1.

11. Read from/write to EEPROM commands "RE" and "WE"

a) "RE": reads all the stored parameters from EEPROM

Usage:

"RE;"

This function is automatically executed after power on if nothing wrong with EEPROM.

b) "WE": writes all the parameters to EEPROM Usage:

"WE;"

12. Setting of open loop or closed-loop motion "FX"

- Usage:
- "FX *p1*;"
 - p1 1: closed-loop control. After it is switched to this mode, the motor will automatically make alignment to grids.
 - 2: open loop

13. Display of driver's version "VER"

Usage: "VER;"

14. Reset the driver "RES"

Usage:

"RES;"

Reset the driver, similar to power-on.

15. Error compensation related commands "TKX", "TKY", "TKR", "TKU", "TKV", "TKA", "TKB", "TKC","NKX", "NKY", "NKR", "NKU", "NKV", "NKA", "NKB", and "NKC"

a) Loading linear error compensation table "TKX", "TKY", "TKA", and "TKB"

Usage:

"TKn i M dat0 dat1 dat2 ... datN;"

where *n* specifies the direction and axis the forcer moves

- n X, X-axis forward
 - Y, Y-axis forward
 - A, X-axis backward
 - B, Y-axis backward
- *i* error compensation begins with the *i*-th input data, *i* is an integer no less than
 0. If *i* = 0, input data begins with *dat0*
- M total number of input data

dat0 ... datN – compensation data table, $N \leq$ 599

In the compensation data table, all the data are in μ m except the first value *dat0* is in mm, they are explained as follows:

dat0 – the first one is not a compensation value, but used to indicate the distance interval where measurement is made to build the compensation table. For example, if measurement is made every 10 mm, dat0 is 10.

```
dat1 – error of the initial point, i.e., interval*0
dat2 – error at inteval*1
dat3 – error at interval*2
```

datN – error at interval*(N – 1), $N \leq 599$

When input the compensation table, the real measured errors are used, e.g., If the measured position is 29997 μ m while it has been commanded to move 3000 μ m, then 3 μ m is input to build the table. The compensation table works in the way that interpolation is applied for any value in each interval; while movement in the negative coordinate, or negative position in the absolute coordinate, will not be compensated. Two-way compensation can be made to have better accuracy. Note that all the compensated values are integer only and in the range of -127 to 127. These four compensation tables "TKX", "TKY", "TKA", and "TKB" works alone even the others do not work at all.

b) Loading "YAW" error compensation table "TKR" and "TKC"

Usage:

. . .

"TKn i M dat0 dat1 dat2 ... datN;"

n - R: "YAW" in forward movement

C: "YAW" in backward movement

i - change begins with the *i*-th input data, *i* is an integer no less than 0, if i = 0, input data begins with *dat0*

M – total number of input data

dat0 ... *datN* – compensation data table, $N \leq 599$

In the compensation data table, all the data are in arc sec except *dat0*. They are explained as follows:

dat0 – the error compensation data table works only when dat0 is 1.

The interval for making the compensation table should be the same as in linear compensation table because they are based on the same forward and backward movement, respectively.

dat1 – error of the initial point, i.e., interval*0, usually 0.

dat2 - error at inteval*1

dat3 – error at interval*2

• • •

datN – error at interval*(N – 1), $N \leq 599$

When input the compensation table, the real measured errors are used, e.g., If the measured yaw error is -3 arc sec, then 3 is input to the table. The compensation table works in the way that interpolation is applied for any value in each interval while movement in the negative coordinate, or negative position in the absolute coordinate,

will not be compensated. Two-way compensation can be made to have better accuracy. Note that all the compensated values are integer only and in the range of -127 to 127.

"TKX", "TKY", "TKA", and "TKB" works even "TKR" and "TKC" do not work. However, "TKR" and "TKC" do not work if "TKX" does not work because "TKX"'s *dat0* is used by "TKR" and "TKC".

c) Loading the local error compensation table "TKU" and "TKV"

Usage:

"TKn i M dat0 dat1 dat2 ... datN;"

n -"U": forward movement in X-axis

"V": forward movement in Y-axis

i - change begins with the i-th input data, i is an integer no less than 0, if i = 0, input data begins with dat0

M – total number of input data

dat0 ... *datN* – compensation data table, $N \leq 599$

Different from "TKX", "TKY", "TKA", and "TKB", the local error compensation table is applicable only to one single pitch. In the compensation data table, all the data are in micron except *dat*0, they are explained as follows:

- dat0 the first one is not a compensation value, but an index, which multiplied by 5 micron is the distance interval between two consecutive measurement points, for the compensation table. There is only one interval value for a compensation table. For example, if measurement is made every 40 micron, dat0 is 8.
- dat1 error of the initial point, i.e., interval*0
- dat2 error at inteval*1
- dat3 error at interval*2

•••

datN – error at interval*(N – 1), $N \leq 599$

The way of making a compensation table for "TKU" and "TKV" is similar to that for "TKX", "TKY", "TKA" and "TKB". The only difference lies in that any measurement outside a mechanical pitch does not contribute to accuracy improvement. The compensation table works in the way that interpolation is applied for any value in each interval while movement in the negative coordinate, or negative position in the absolute coordinate, will not be compensated. Two-way compensation can be made to have better accuracy. Note that all the compensated values are integer only and in the range of –127 to 127. If any *dat0* of the two compensation tables "TKU" and "TKV" is less than 1, neither one of them will work.

d) Display of error compensation table "NKX", "NKY", "NKR", "NKU", "NKV", "NKA", "NKB", "NKC".

Usage:

- "NK*n i M*;"
 - n X: forward movement in X-axis
 - Y: forward movement in Y-axis
 - R: forward movement in YAW-axis
 - U: forward movement in X-axis
 - V: forward movement in Y-axis
 - A: backward movement in X-axis
 - B: backward movement in Y-axis
 - C: backward movement in YAW-axis
 - i change begins with the *i*-th input data, *i* is an integer no less than 0, if i = 0, input data begins with dat0
 - M total number of input data

For example, key in "NKX 0 10;" shows the error compensation values "*dat0 dat1 dat2 ... dat9*" for forward movement in X-axis.

16. In-Position command "INP"

Usage:

"INP p1;"

p1 – This determines the tolerance window for the In-Position signal. Unit: micron. For example, if p1=5, the In-Position signal would be ON when the LMSP motor becomes within +/-5 micron from target position. The In-Position signal is arranged to be at the pin OT6-C of DXIO card. B5 LED on the DXIO card also shows In-Position signal.

Calibration

It's necessary to do calibration when the system is unable to make automatic alignments after power on, a new forcer is used, or a new driver is used. Follow the procedure below to calibrate the system. (Generally, HIWIN has completed calibration for paired driver and motor for customers.)

a) Set the motor to open loop,

"FX 2"

- b) Calibrate the Position Sensor"CL"
- c) Define Null periods (position sensor period) after the forcer come to a full stop.
 "NP"
- d) Save parameters
 - "LNS"
- e) Write parameters to EEPROM "WE"
- f) Set the system to closed-loop again."FX 1"

VI. PROGRAM DOWNLOAD FROM PC TO DSP

In case there is an updated version of the DSP software, which drives the LMSP motor, it is possible to re-burn the flash memory and update the DSP codes inside LMDX controller box. It is also possible to download motor parameter files (*.mot) to LMDX. Or it is preferred to write motion programs off-line on PC and download it later to LMDX. For your convenience, *HIWIN* provides such a tool, named "DspHost", to download programs through RS-232 connection. The program could also serve as an general purpose terminal program.

Included in the CD-ROM, there is a directory called "DspHost". Run the "setup.exe" program in this directory to install.

1) Run "DspHost.exe" and a window as shown in Fig. 6.1 will be brought up.

믵	Dsp	pHost -	< >										×
Fi	le	<u>V</u> iew	System	Options	Graph	<u>H</u> elp							
	C	co	<mark>Р</mark> Ц	. 💝	7		010 Q	1	010 🎽	010	Ŷ		
Г													
L													
L													
													-
L	oad	ing sy:	stem conf	iguration s	uccess								
Re	ady											CAP NUM	

Figure 6.1 "DspHost" window

2) Click on "COM Port <u>Settings...</u>" under "<u>System</u>" (Fig. 6.2) or push the "COM" icon button to make correct settings (Fig. 6.3) based on the serial port you use.

📲 DspHost -	\leftrightarrow			
<u>File V</u> iew	<u>System</u> Options Graph <u>H</u> elp			
I II 4	COM Port Settings		010	•
Loading syst	Download DSP program to <u>R</u> AM via COM Write DSP program to <u>F</u> lash via COM Download DSP program to RAM via LPT Send Symbol data via COM Send Binary data via COM	Ctrl+R Ctrl+F F2 F3 F4		
Set COM port	parameters			NUM ///

Figure 6.2 Use menu to select "COM Port Settings..."

🖳 DspHost - < >	_ _ ×
<u>File View System Options Graph H</u> elp	
📭 🤌 🗶 😓 😓 🛍 📅 🔚 🕰 🎬 🧆 🎙	
COM Communication Settings.	<u>م</u>
Potr: Baud: Parity: Parity:	
N	
COM1 V 9600 V C Even	
● Odd	
Stop Bits:Data Bits	
Input buffer Output buffer	1
16384 4096 OK	J
Cancel	
Loading system configuratio	-
Ready	CAP NUM //

Figure 6.3 Example of COM1 Communication Settings

3) Download DSP code (firmware) to flash memory in LMDX controller box.

The error compensation data will not be saved automatically while updating DSP codes by use of "DspHost". So please make sure to take down the error compensation table data using "NK*n*" command before downloading any programs using "DspHost".

The DSP code files have a file extension of COD (*.cod)

The procedure to download programs to DSP board is described as follows:

(a)Make sure that the connection of RS-232 cable between PC and LMDX is OK. Execute DspHost.exe. Turn on LMDX, normally the LMDX (monitor program) will send an asterisk (*) to the terminal program. If within 0.7 seconds at this moment backspace key is pressed, the LMDX monitor program will be activated and take over. See Fig. 6.4 After this, close DspHost, then execute DspHost again.

Figure 6.4 LMDX monitor program

(b)Click on "Select File..." in "File" (Fig. 6.5) to choose the firmware (Fig. 6.6) to download.

号 DspHost - < 🚿										_ 🗆 ×
<u>File V</u> iew <u>S</u> yste	m <u>O</u> ptions	Graph	<u>H</u> elp							
Select File	2 💝	7		2 10	010 2	010	۹	ę		
Recent File										A
Exit										
										T
Loading system co	nfiguration s	uccess								
<u> </u>										
Select file									CAP NUN	1 ///

Figure 6.5 Use menu to select a firmware file

⊒ jDspHost - < >			_ 🗆 🗵
<u>File V</u> iew <u>S</u> ystem <u>Options</u> (Braph <u>H</u> elp		
м 🤌 🐫 😜	🐨 💷 🥰 🛅 躇	📲 🧶 🎖	
開啓舊檔		? ×	<u> </u>
搜尋位置(<u>I</u>):	🔁 Motors	- 🗈 📸 📰	
Hlp.cod			
 檔案名稱(<u>N</u>): 檔案類型(<u>T</u>):	Pos.cod DSP program files (*.cod)	開啓舊檔(①) ▼ 取消	V
Loading system configuration suc	cess		
Ready		NUI	M

Figure 6.6 Select DSP program files (firmware) to open

(c) Click on "Write DSP program to <u>F</u>lash via COM" in "<u>System</u>" (Fig. 6.7) or \checkmark to

₽ 1)spHos	- < E:\hiwin\lmsp\Motors\Pos.cod >		
File	<u>V</u> iev	System Options Graph Help	_	
١		COM Port <u>S</u> ettings Download DSP program to <u>R</u> AM via COM Ctrl+R	🎬 🧇 💡	
Ł		Write DSP program to <u>F</u> lash via COM Ctrl+F		<u></u>
		Download DSP program to RAM via LPT F2		
		Send Symbol data via COM F3		
		Send Binary data via COM F4		
L				
L				
				7
Los	ading s	ystem configuration success		
<u> </u>				
Write	e DSP j	rogram from selected file to Flash via COM		NUM ///

download the chosen DSP program to LMDX controller box's flash memory.

Figure 6.7 Write DSP program to flash memory via COM

(d) After the download process (Fig.6.8), the program should be in the DSP flash memory. Now you can turn LMDX off and on again or you can issue the SP command to run the downloaded DSP code.

Figure 6.8 Download process of DSP program

- 4) Download motor parameters to the LMDX controller box.
 - (a) Click on "Select File..." in "File" (as in Fig. 6.5) to select the desired file (Fig. 6.9).

Den Host - « Edhimindle	are Water Passed a	
Ella Wien Santom Or	ispano orse us.cou >	
<u>rne view system O</u>	ora craph <u>H</u> erb	010
ма 🧶	🈂 🐨 💷 🥰 🛅 😤	
開啓舊	當	? ×
搜尋位	置(]): 🔁 Motors	💽 🖻 📸 📰
20	5.mot 🛋 230.mot 📾 H	Ilp.cod
	>_mot.doc ♥थ]23U_mot.doc ₪an_P 6.mot ₪a1265.mot R	'os.cod Readme txt
22	5_mot.doc 📾 265_f1.mot	
22	3.mot 🕎 265_mot.doc	
1 22	3_mot.doc 🔤 3N.prg	
檔案名	稱(<u>N</u>): 230.mot	開啓舊檔(0)
檔案類	趣(I): All files (*.*)	▼ 取消
Loading system configur	ation success	
Ready		NUM

Figure 6.9 Select the file with desired motor parameters

(b) Click on "Send Symbol data via COM" in "<u>System</u>" to download motor parameters via RS-232 (Fig. 6.10).

Figure 6.10 Download motor parameters to the LMDX controller box

5) Download user's motion programs to the LMDX controller box's DSP.

An example motion program "3n_p1.prg" is also included in the CD-ROM.

(a) Click on "Select File..." in "File" (Fig. 6.11) to select user's program file (Fig. 6.12).

₽ _DspHost - < E:\hiwin\lmsp\Motors\230.mot >	
<u>File</u> <u>V</u> iew <u>System</u> <u>Options</u> Graph <u>H</u> elp	
Select File 🛃 🤝 🗐 🗐 👘 🤗 💡	
1 230.mot	
2 Pos.cod	
Exit	
	V
Loading system configuration success	
Select file	NUM //

Figure 6.11 Use menu to select user's program file

➡gDspHost - < E:\hiwin\lmsp\Motors\230.mot >	
<u>File V</u> iew System Options Graph <u>H</u> elp	
м 🦀 🔍 💝 📅 🗉 🥰 1	🛅 🚰 🎬 🧇 🔋
開啓舊檔	? ×
搜尋位置(I): 🔄 Motors	
IN prg	
檔案名稱(<u>N</u>): 3N.prg	開啓舊檔(0)
檔案類型(<u>T</u>): User program files (*.p.	rg) 🔽 取消
T - 1	
Loading system configuration success	
Ready	NUM //

Figure 6.12 Select user's program file to open

(b) Click on "Send Binary data via COM" in "System" to download user's program file via RS-232 (Fig. 6.13).

₽_1DspHost - < E:\hiwin\lmsp\Motors\230.mot >		
<u>File View</u> System Options Graph <u>H</u> elp		
COM Port Settings Download DSP program to RAM via COM Write DSP program to Flash via COM Download DSP program to RAM via LPT Send Symbol data via COM Send Binary data via COM	4 Ctrl+R Ctrl+F F2 F3 F4	
Send binary data via COM port	[NUM ///

Figure 6.13 Download user's program file to DSP board

VII. HELP

If you have any questions concerning LMSP and/or LMDX controller box, *HIWIN* engineers are always there to assist you. Please take notes of your questions, error messages, firmware version, and serial number before contacting us. We can be reached as shown below.

HIWIN MIKROSYSTEM CORP. No. 3, 6th Road Taichung Industrial Park Taichung 407, Taiwan TEL: 886-4-23550110 ext. 511, 512, 513 FAX: 886-4-23550123

APPENDIX A PULSE COMMAND FORMAT

There are two formats of pulse commands: CW/CCW and STEP/DIR. Only STEP/DIR is available in LMDX controller box. Its format is shown below.

	Positive direction	Negative direction
STEP		
DIR	[